

Awareness of the "microbiome" is rising

Scientific communities / general population

Exihibitions

A Microbiome exhibition was set up at large scale in 2015 at the American Museum of Natural History in New York

Mind the Gut - an upcoming exhibition on the connections between the brain, gut and microbes

Microbiota profiling .. and how to modulate it

The human microbiome – a massive diversity

Numbers

- \rightarrow Human body \rightarrow 30 trillion cells
- \rightarrow Human genome \rightarrow 23,000 genes
- ➤ Human microbiome → 100 trillion cells
- \rightarrow Microbial genome \rightarrow 2 million genes
- ➤ 1100 bacterial species
- Large diversity across body sites
- Large interpersonal diversity
- Dominated by "unexploited" bacteria (often strict anaerobes)

Nature Reviews | Genetics

The intestine

The gut microbiome

Microbial homeostasis

- > Strengthen gut integrity
- Shape intestinal epithelium
- Harvest energy
- Protect against pathogens
- Develop and regulate host immunity

Dysbiosis

- Altered neurotransmitter production
- > Inflammation
- Oxidative stress
- > Increased permeability
- > Endotoxin exposure

Areas of research where microbial composition seem crucial

Metabolic health

- Akkermansia municiphila

Derrien et al. 2017, Microb pathog, 106, 171-181

Infant health

Microbiota

Inflammatory Bowel Disease

- Faecalibacterium prausnitzii

https://presse.inserm.fr/en/treating-intestinal-pain-with-bacteria/22063/

Necrotizing EnteroColitis

Rather than being invaded by enemies - we may have lost some friends

Examples of missing microbes and activities
- often fueled by lifestyle

Infant gut:

> Early colonization by Bifidobacteria

Adult gut:

- Loss of Specific anti-inflammatory taxa
- Reduced SCFA production
- Low-grade inflammation and barrier impairment

Infant health – order of bacterial appearence seems to matter

Main drivers of the microbial colonization of the infant intestine

Mode of delivery

Vaginally born vs Cesarean section

Gestational age at birth

Preterm

Infant feeding mode

Breast-feeding (Ig, HMO) vs Formula-feeding

Maternal diet

Environment

Family lifestyle and Geographical location

Host genetics

10 newborns < 24h
4 Vaginally delivered
6 C-section

Balancing the microbiota composition during infancy

Stages of neonate colonisation from birth

Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age

Hans Bisgaard, MD, DMSc, a Nan Li, MD, PhD, a,b,c Klaus Bonnelykke, MD, PhD, a Bo Lund Krogsgaard 2010 Blackwell Publishing Ltd Thomas Skov, MSc, PhD, d Georg Paludan-Müller, MSc, PhD, Jakob Stokholm, MD and Karen Angeliki Krogfelt, MSc, PhD Copenhagen, Denmark, and Denmark of Allergic Disease Constitution of Allergic Disease Constitution in Children and nost-natal exposure to antibiotics and the development of eczema, and nost-natal exposure to antibiotics and the development of eczema.

Food and drug reactions and anaphylaxis

Is delivery by cesarean section a risk

Merete Eggesbø, MD, PhD, a Grete Botten, MD, PhD, b Hein Stigum, PhD, a
PhD, a grete Botten, MD, PhD, a Grete Botten, MD, PhD, b Hein Stigum, PhD, a
PhD, a grete Botten, MD, PhD, a Sto, Norway

OKIGHTON AND THE TOTAL TO Antibiotics and the contribution in children

And post-natal exposure to antibiotics and the children

And post-natal exposure to antibiotics and the

Areas of research where microbial composition seems crucial

Metabolic health

- Akkermansia municiphila

Derrien et al. 2017, Microb pathog, 106, 171-181

Infant health

Microbiota

Inflammatory Bowel Disease

- Faecalibacterium prausnitzii

https://presse.inserm.fr/en/treating-intestinal-pain-with-bacteria/22063/

Necrotizing EnteroColitis

Necrotizing EnteroColitis (NEC)

Pathology

Inflammatory disease of the intestines

Severe NEC affects 5-7% of very preterm infants

Surgical intervention is often needed

NEC-related mortality 15-20%

Associated morbidities include

- intestinal strictures
- short gut syndrome
- neurodevelopmental disorders

Probiotics reduce NEC and death

Probiotic bacteria colonize the intestines

Administration of probiotics is extensively studied in very preterm infants

Cochrane-review includes >5000 infants

- NEC risk reduction 57%
- Overall mortality risk reduction 35%

Intervention in preterm NEC infants with Chr Hansen strains

Bifidobacterium infantis (BB-02 3.0x10E⁸ CFU) Streptococcus thermophilus (TH-4 3.5x10E⁸ CFU) Bifidobacterium lactis (BB-12 3.5x10E⁸ CFU)

Positive on NEC reduction as a secondary endpoint

	Probiotic Group, n = 548	Control Group, $n = 551$	RR (95% CI)	<i>P</i> Value
NEC				
NEC (Bell stage 2 or more), n (%)	11 (2.0)	24 (4.4)	0.46 (0.23 to 0.93)	.03
Subgroup analyses:				
Gestational age				а
<28 wk, n (%)	11 (5.0)	17 (7.2)	0.69	
≥28 wk, n (%)	0	7 (2.2)		
Birth weight				.08 ^b
<1000 g, n (%)	10 (4.3)	14 (5.9)	0.73	
\geq 1000 g, n (%)	1 (0.3)	10 (3.2)	0.10	
Age at NEC (Bell stage 2 or more), d, median (IQR)	20.5 (15.5–34.5)	21 (17.0–30.5)		.99

Areas of research where microbial composition seems crucial

Metabolic health

- Akkermansia municiphila

Derrien et al. 2017, Microb pathog, 106, 171-181

Infant health

Microbiota

Inflammatory Bowel Disease

- Faecalibacterium prausnitzii

https://presse.inserm.fr/en/treating-intestinal-pain-with-bacteria/22063/

Necrotizing EnteroColitis

Bacterial species abundance differentiates IBD patients and healthy individuals

Microbial alterations

- Decreased richness
- Altered taxonomic profiles
- > Altered metabolic output

Anti-inflammatory activities by Faecalibacterium prausnitzii

- Represents around 5% of the total fecal microbiota in healthy adults
- Abundance decreased in IBD, IBS, colorectal cancer, obesity, celiac disease

- > Extremely oxygen-sensitive
- Complicated to grow
- In animal studies *F.prausnitzii*
- Inhibits symptoms in colitis models
- Improve gut permeability
- Decrease pain in restrained-stress model
- Mode of action
- Active metabolites; Butyrate & Salicylic acid
- Anti-inflammatory protein "MAM"
- > Extracellular Polymeric Matrix, EPM

Areas of research where microbial composition seems crucial

Metabolic health

- Akkermansia municiphila

Derrien et al. 2017, Microb pathog, 106, 171-181

Infant health

Microbiota

Inflammatory Bowel Disease

- Faecalibacterium prausnitzii

https://presse.inserm.fr/en/treating-intestinal-pain-with-bacteria/22063/

Necrotizing EnteroColitis

Metabolic health - Akkermansia Municiphila

- One of the most abundant single species in the human gut 0.5-5%
- Decreased abundance in obesity, T2D, IBD, hypertention, liver disease
- Antidiabetic medicine cause a significant increase in A. municiphila abundance

- Growth conditions complicated
 - \triangleright Sensitive to O_2
 - > Growth on mucin
- Daily administration of A.
 municiphila 2 x 10⁸
 bact/day partly protected
 against DIO in mice

Next generation **probiotics**

Lactobacillus & bifidobacteria – still essential in many areas

- preterm babies
- > infants
- vaginal health

Strict anaerobes

- ➤ Health related changes cause or consequence???
- Often acknowledged due to decrease during disease conditions
- Not yet well characterized
- Stability is challenging
- Knowledge on survival through the GI tract is scarce
- Safety requirements (Generally Recognized As Safe, GRAS or Qualified Presumption of Safety, QPS)

FROM THE ANALYST'S COUCH

The human microbiome: opportunity or hype?

Pedro M. Valencia, Magali Richard, Jesse Brock and Elsy Boglioli
Nat Rev Drug Discov, (2017)12, 823-824

Movie- Bioprotection helps Keep food great!

Use of bioprotective food cultures in dairy is growing rapidly worldwide

Food cultures can help enable shelf life extension

Bioprotective cultures delays outgrowth of molds and yeast in Tvorog

Example: Tvorog fermented with eXact® Fit 3 starter culture, with or without the addition of FreshQ®Tvorog 1 (50 U/T milk), added *P. brevicompactum, P. crustosum, P. solitum , P. carneum, P. paneum* and *P. roqueforti* (500 spores) and stored at 7°C/45°F for 28 days

Example: *Debaryomyces hansenii* (added at 50 cfu/g) in tvorog produced with eXact[®] Fit 3 starter culture, with and without addition of FreshQ[®] Tvorog 1 (50U/T milk) and stored at 7°C/45°F

